A Lower Bound of The First Eigenvalue of a Closed Manifold with Positive Ricci Curvature

نویسنده

  • Jun LING
چکیده

We give an estimate on the lower bound of the first non-zero eigenvalue of the Laplacian for a closed Riemannian manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A Lower Bound of the First Eigenvalue of a Closed Manifold with Negative Lower Bound of the Ricci Curvature

Along the line of the Yang Conjecture, we give a new estimate on the lower bound of the first non-zero eigenvalue of a closed Riemannian manifold with negative lower bound of Ricci curvature in terms of the in-diameter and the lower bound of Ricci curvature.

متن کامل

A Lower Bound of the First Dirichlet Eigenvalue of a Compact Manifold with Positive Ricci Curvature

We give a new estimate on the lower bound for the first Dirichlet eigenvalue for a compact manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature. The result improves the previous estimates.

متن کامل

Lower Bound Estimate for the First Eigenvalue of Compact Manifolds with Negative Lower Bound of Ricci Curvature

We estimate the lower bound of the first non-zero eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature in terms of the diameter and the lower bound of Ricci curvature and give an affirmative answer to the conjecture of H. C. Yang.

متن کامل

Ju n 20 04 The First Closed Eigenvalue and the Li Conjecture ∗

We give new estimate on the lower bound for the first non-zero eigenvalue for the closed manifolds with positive Ricci curvature in terms of the diameter and the lower bound of Ricci curvature and give an affirmative answer to the conjecture of P. Li for the closed eigenvalue.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008