A Lower Bound of The First Eigenvalue of a Closed Manifold with Positive Ricci Curvature
نویسنده
چکیده
We give an estimate on the lower bound of the first non-zero eigenvalue of the Laplacian for a closed Riemannian manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملA Lower Bound of the First Eigenvalue of a Closed Manifold with Negative Lower Bound of the Ricci Curvature
Along the line of the Yang Conjecture, we give a new estimate on the lower bound of the first non-zero eigenvalue of a closed Riemannian manifold with negative lower bound of Ricci curvature in terms of the in-diameter and the lower bound of Ricci curvature.
متن کاملA Lower Bound of the First Dirichlet Eigenvalue of a Compact Manifold with Positive Ricci Curvature
We give a new estimate on the lower bound for the first Dirichlet eigenvalue for a compact manifold with positive Ricci curvature in terms of the in-diameter and the lower bound of the Ricci curvature. The result improves the previous estimates.
متن کاملLower Bound Estimate for the First Eigenvalue of Compact Manifolds with Negative Lower Bound of Ricci Curvature
We estimate the lower bound of the first non-zero eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature in terms of the diameter and the lower bound of Ricci curvature and give an affirmative answer to the conjecture of H. C. Yang.
متن کاملJu n 20 04 The First Closed Eigenvalue and the Li Conjecture ∗
We give new estimate on the lower bound for the first non-zero eigenvalue for the closed manifolds with positive Ricci curvature in terms of the diameter and the lower bound of Ricci curvature and give an affirmative answer to the conjecture of P. Li for the closed eigenvalue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008